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Abstract  

 We provide exact solutions for two closely related valuation problems in continuous-time finance. 

The first problem is to value generalized European-style options on stocks that pay dividends at a constant 

dollar rate. The second problem is to find the yield curve associated with the economy of R.C. Merton's "An 

Asymptotic Theory of Growth Under Uncertainty". In Merton’s economic growth model, the interest rate 

process has a volatility linear in the rate level and a linear/quadratic drift. Both problems are solved by an 

eigenfunction expansion technique. The main technical difficulty is handling the problem of payoff functions 

which are not square-integrable with respect to the natural weight function of the models.          
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1. INTRODUCTION 

  

This paper presents exact solutions for two diffusion models for certain security prices in a perfect market. 

Both models were introduced and partially solved by Merton over two decades ago, which makes them 

relatively old problems of continuous-time finance. The first  problem is the valuation of a European-style 

option on a stock that pays a constant dollar dividend rate. Merton (1973) found the time independent 

solution as the time to expiration becomes large. The second problem is to find the term structure of interest 

rates associated with a risk-adjusted process that has a volatility proportional to the rate level and a mean-

reverting drift given by the sum of a linear and quadratic term. Merton (1975) derived this interest rate 

process as a consequence of a certain economic growth model and solved for the steady state probability 

distribution for the rate.  In the first model, our new result is the calculation of the full time dependent option 

solution. In the second model, our new result is the determination of the yield curve. So, in both cases, while 

Merton found a time independent solution, we are providing the full dynamics.  

 As it turns out, the two models are closely related. The models are solved here by the technique of a 

Laplace transform of the time dependence which leads to eigenfunction expansions involving confluent 

hypergeometric functions. There are two new items here. First, the general technique of an eigenfunction 

expansion has, to the author's knowledge, received little attention in finance. Because this technique is very 

powerful, it may assist in the solution of other difficult problems. So, we have a new application of the 

general technique. Second, the nature of the initial conditions in these problems leads to a  difficulty not 

discussed in the approach of standard treatises on this subject, such as Titchmarsh (1962). Briefly, in the 

approach of Weyl (1950), Titchmarsh and others (especially applications to quantum mechanics), the general 

theory is usually closely associated with the Hilbert space of square-integrable functions. But, in the finance 

problems of the type discussed here, sometimes the (initial and time-developed) payoff functions are in such 

a space and sometimes not. When they are not, this introduces certain additional eigenvalues into the 

problem which determine the large-time behavior of the solutions. As a result, the correct treatment of this 

situation makes our expansions not simply a routine exercise in the application of a standard mathematical 

technique.  

 Our results for the two models provide some insights on the important role played by a principal 

eigenvalue in the large-time dynamics of  models in continuous-time finance. For example, in the interest 

rate term structure model discussed here, we can see how an increase in volatility can prevent equilibrium. 

Interest rate equilibrium is characterized by a strictly positive principal eigenvalue, a bond price that tends 

asymptotically to zero, and a strictly positive asymptotic yield. In contrast, non-equilibrium is characterized 

by a zero-value principal eigenvalue, a bond price that tend asymptotically to a strictly positive constant, and 

a zero-value asymptotic yield.  
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 This paper is organized as follows. In Section 2, we provide the solution of the  problem of options 

on stocks with a constant dollar dividend rate. In Section 3, we  develop the term structure of interest rates 

for the interest rate process discussed above. In each section, while we briefly discuss applications and 

present examples, we believe that the main contributions are the solution proofs presented in Appendixes I 

and II.   
 

2. OPTIONS ON STOCKS WITH A CONSTANT DOLLAR DIVIDEND RATE  

 

2.1 Problem Definition. 

 The problem discussed in this section is to value certain generalized European-style claims on  stocks.  The 

random stock price at time T, denoted , is assumed to follow a stochastic differential equation with a 

constant price return variance rate , but with an arbitrary drift rate.  An owner of the stock  receives a 

continuous payout at the constant rate of D dollars per year. The claims expire at time with a specified 

payoff . Prior to their expiration, the claims have no payouts. We assume perfect frictionless 

markets and the existence of a money market account with a constant riskless interest rate r . Using a no-

arbitrage argument, the value of the option or generalized claim price 

ST

σ 2

T∗

f ST0 ( ∗ )

f S( , )τ can be shown to satisfy the 

second order differential equation (Model I): 
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where t = ≥ ≤−T T S* ,0   0 < ∞  and with the specified payoff at t = 0 . Merton (1973, eq. 46) found the 

time independent t → ∞

S S KT T 0( ) max( , ) (∗ ∗= −

 solution for the special case of the call option payoff: 

, where K  is the strike price.  Our new findings include (i) the full 

time dependent put and call option solutions and (ii) the solution for general payoff functions in a certain 

function space. In addition, we clarify to what extent it makes sense to say that the dividend rate is constant, 

given the non-zero probability of the stock price reaching zero (bankruptcy). Equation (2.1) represents one of 

the simplest generalizations of the original Black-Scholes option theory to a world with continuous payouts. 

The other natural continuous payout is a continuous dividend yield 

f S KT0 )∗= − +

δ . With a continuous yield, the dividend 

rate D above is replaced by δ • S  and eq. (2.1) has  well-known option solutions, obtained by a transformation 

to the heat equation. 

 In terms of applications, Model I solutions with an option payoff provide an approximation to the 

value of European-style options on broad-based equity indexes. Over typical holding periods of a year or 

less, a constant dollar dividend rate approximation is generally better than a constant yield approximation 

since companies are slow to change their dollar dividends on this time scale. In addition,  the diversified 

nature of many indexes makes the continuity assumption a reasonable approximation. 
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2.2 Boundary Conditions. 

In the differential equation (2.1), both S = 0  and S = ∞ are singular points. In general, the ability and/or the 

necessity to specify boundary conditions at singular points depends upon the nature of the boundary. One can 

easily remove the third term  from eq. (2.1) by introducing a discounting factor. Then, the equation is 

transformed into one suitable for Feller’s boundary classifications [see Karlin and Taylor (1981), Chapt. 15].  

These classifications are determined entirely by the behavior of the underlying (risk-neutral) stochastic 

process near the boundaries. One is first tempted to write the stochastic differential equation for the stock 

price dynamics as 

−rf

d= −( )DdX rX Xdz+t s , starting at X( )0 S= . However, as shown below, this needs to 

be refined at . X = 0

  In this model, nothing novel for finance occurs at infinity, which is a natural boundary and has zero 

probability of being reached by the stock price dynamics in finite time. In general, this prevents the 

specification of boundary conditions at infinity. This is the same boundary behavior which occurs in the 

Black-Scholes theory for a non-dividend paying stock. Clearly, this boundary behavior is expected because, 

as the stock price increases, a constant dividend becomes negligible. 

 The behavior near the origin is more interesting; the origin is an exit boundary, attainable in finite 

time from any finite starting value X S( ) [ , )0 0= ∞∈ . A simple argument for finite time is as follows: once a 

random jump takes the stock price to a small value of  X, then the process behaves like dX d≈ −  D τ , which 

will be attracted to the origin as long as D > 0. In Section 2.9, we calculate the exact probability that the 

origin is reached from the interior. If the stock price reaches zero, an  economically reasonable assumption is 

(i) the stock price process stops, meaning that absorption occurs (the price remains zero subsequently) and 

(ii) the dividend payments stop also. While this is not the only possible boundary behavior, it is a natural 

choice for this problem and is compatible with the Merton large-time solution. The absorption event itself 

can be sensibly termed bankruptcy. The possibility of bankruptcy is an interesting feature in this model in 

contrast to the Black-Scholes model with a continuous yield. In the Black-Scholes case, the origin is a natural 

boundary, unattainable in finite time from a strictly positive initial stock price. Bankruptcy also can occur in 

Cox’s Constant Elasticity of Variance Model (Cox and Ross (1976)). In the Cox model, the bankruptcy is 

caused by the behavior of the volatility term, while here it is caused by a cash flow in the drift term, which is 

somewhat more natural.  Since the dividend payments stop if bankruptcy occurs, a more complete 

description of the underlying stochastic process is dX rX X d Xdz X S= − + =( )( ( )) ,D t s    

D( )

0

,X X= D   ( > 0

. Now , 

the dividend process, is given by the time homogeneous function  and  

. 

D( )X

)

D( ) ,X X= =0   ( 0)

 As a practical matter, one would expect a real-world company to reduce or eliminate its dividend, if 

possible,  if its stock price were very low. If the “stock” were actually a bond, this might not be possible 

contractually and a real-world bankruptcy similar in spirit to the idealized one here could result anyway. As a 

generalization of the model here, one might consider more complex dividend policies  to better model D( )X
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real-world behavior.  Whether or not these more complex policies could lead to the security price reaching 

zero may be investigated by the Feller boundary criteria. Mathematically, the question would be whether or 

not the origin is an exit boundary. Calculating option values would presumably require a numerical approach 

to the valuation equation (2.1).   
 

2.3 Impact of  Bankruptcy on Option Values. 

Clearly, the possibility of bankruptcy may have a significant impact on the value of a put option P S( , )t , 

with new aspects not seen in the Black-Scholes theory,  as we shall show in detail in section 2.11. To briefly 

see the impact, consider the put value as the discounted expectation . 

(Notation: when we need to show a time argument for X, we write 

P S r ES( , ) exp( ) [(t t= −

( )

K X ) ]t− +

X τ  or  interchangeably.) Here 

 denotes the expectation of a measurable function  under the process 

Xτ
f X( )E f XS [ ( )]τ

dX rX= − X d Xdz+( ( ))D ,t s  calculated when  X( )0 S=  Define the complete transition probability 

p S Z( , , )t  by 

 
     p S Z X Z X S( , , ) Pr{ ( ) | ( ) }t t= ≤ =  0 = +A S p S Z( , ) *( , , )t t ,  
 

where A S( , )τ  is the probability that the underlying process starting at X( )0 S=  is absorbed at the origin 

prior to τ. Consequently, p S Z*( , , )t  is the remaining probability, conditional on no prior absorption. Then, 

the put option value is given by  
                         

   P S r A S K K Z G S Z dZ( , ) exp( ) ( , ) ( ) ( , , )[ ]τ τ τ τ= − + − +∞∫  0 , 

where the Green function (Arrow-Debreu security) . The first component  G S Z p Z p Z( , , ) / /t ∑ ∑ ∑ ∑= = ∗D  

term of the put value, which can be thought of as a bankruptcy claim, has no analog in the original Black-

Scholes theory. 

 
2.4 The Role of the Confluent Hypergeometric Functions. 

We now show why the confluent hypergeometric functions will play an important role in the solution of 

eq.(2.1). Our general approach is similar to Titchmarsh (1962).  Define  and  

In eq. (2.1) let 

b s= 2 02r/ ≥ g s= >2 02D/ .

x S= γ / , ,  t = τσ 2 2/ f S x t( , ) ( , )t j= , and j ( ,0 j) ( )x x0= , where 0 < < ∞x . Then, 

j ( , )x t  satisfies  

(2.2)                                                                                Aj j b j b j   = + + − − =D x x xxx x t
2 2 2[ ( ) ] j

(Note: boldface always denotes a differential operator and subscripts sometimes denote differentiation with 
respect to the subscript variable). The Laplace transform  
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      F( , ) [ ] exp( ) ( , )x s L st x t dt= = −∞
∫j j  

0

satisfies . We solve this last equation with a Green function, which is constructed from 

solutions to the homogenous equation 

( )A − = −s F j0

( )A − =s HF 0
ax s x H x s( , ) ( ,=

. To invert the transform, s must be considered a 

complex variable throughout.  Let , yielding FH ) xH c x H aHxx x+ + + =( ) 0

s+ +1 1 2 4 1 2) ] /b

H x s( , )

, where a and 

c are determined by 2 1   and .  Noting the sign changes  

from Kummer's confluent hypergeometric equation

1 2 4 1 2s+ +) ] /

c x− )

a

x) x Mc1− (

= −( )

a c 1 2− + ,

− [(b b

− ,

c = − [(

1, independent solutions for are given by 

 and . We assume throughout that c is not an integer.  M a c( , ,−
 

2.5 The Liouville Standard Form. 

The Liouville standard form is a transformation of the equation xH c x H aHxx x+ + + =( ) 0  which is helpful 

for three purposes. First, the standard form equation has a simpler natural function space, which we use in 

Section 2.6 and Appendix I. Second, as discussed below, it suggests some intuition about the qualitative 

behavior of the solutions. Finally, it motivates a variable change from the Laplace transform variable s to an 

eigenvalue l that proves convenient. 

 Specifically, the function  , where , solves the 

standard form . Here  

u z s x x H x sc( , ) exp( / ) ( , )( )/= −1 2 2

u u= λ q z z( ) exp( ) /

x z z( ) exp( )=

zp( ) /Lu u q zzz=− +∆ ( ) ( ) ex= − −2 4 2 2β  and λ δ= − +( )s , 

where we introduce . In this notation δ β  =  ∆ ( )+1 2 / 4 a i   and  = −( )1 +/b l2 c . For a 

physical interpretation of the standard form equation (which provides some intuition about solutions), 

interpret 

i l= +1 2

Lu = uλ  as Schroedinger’s equation for the probability amplitude of finding a quantum mechanical 

particle in the potential described by q z . Visualizing q z , one sees the potential vanishing as z( ) ( ) →−∞ , 

an increasingly  positive barrier as z →∞ , and a well of finite depth in-between (a depth controlled by β). 

With this type of shape, experience suggests that among the solutions will be certain bound states with a 

discrete spectrum, and certain oscillatory scattering states with a continuous spectrum. If β is not large 

enough, the potential well will be shallow and there may be no bound states. These suggestions are 

confirmed below in the proof of Proposition 2.1. In addition, we frequently use below probabilistic 

interpretations of  solutions to Model I. For a discussion of the probabilistic interpretation of solutions to 

Schroedinger’s equation, see Durrett (1984)  

 
2.6 The Green Function and the Function Spaces. 

In Section 2.4 we showed how to transform the option valuation equation into the inhomogenous equation 

.  In this section, we discuss the solution to this equation by the Green function method. The 

Green function method expresses the solution to the inhomogenous equation in terms of solutions to the 

homogenous equation  

( )A − = −s F j0

( )A− =s F 0. The method also leads naturally to a discussion of the relevant function 

spaces for the problem. In particular, the behavior of the option payoff function when the stock price is very 

small or very large has consequences for the qualitative behavior of F  in the complex s-plane. Specifically, 
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the poles of  in the s-plane determine the large-time behavior of the option values. In this section and the 

next two, we focus on payoff functions which fall off more rapidly than put and call options as 

F

S → ∞0, . In 

a later section, we show how to generalize these results to traditional option payoffs.  

A

)d l F

y y=

dy

∈ r∈L2 0, ( , X

∈ ∞( ,

l

u2 2 0∈L   ( ,

βy y−

f S0 ( )

K1 0>

2

  It is more convenient to use λ instead of s as our transform variable. Consider two independent 

solutions to ( )+ + =d l F 0 , which we call ξ λ( , )x and η λ( , )x . Then, the  formal Green function solution 

to (  is given by A + + = −j0
 

(2.3)                     ,             − = +∫ ∫
∞

F( , ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )x x y y y dy x y y y
x

x
l h l r x l j x l r h l j0

0
0

where and where W is the Wronskian of (r( ) ( )y− −2 1W , )x h . Under what circumstances can we say 

such a solution exists? To answer this, we need some notation: for  a complex-valued function of a real 

variable 

f x( )

x, f L2, ( ,r  means . The integrals in eq. (2.3) exist if , X )  ρ( )| ( )|x f x dxX
Y 2∫ < ∞ x )

η ρ2, )X j

)

L ,  and , so these three integrability conditions are sufficient. For complex λ 

such that Im(
r0 2∈  L , (0 ∞, ) 

≠ 0, suitable ξ η,  in these functions spaces always exist by Weyl's limit point/limit circle 

theory. [For a brief review, see Weyl (1950); for a  more thorough discussion, see Hille (1969)].  

Equivalently, there exist solutions u u  to 1 2, − + =u qzz z( )u uλ  such that  , u1 2∈ −∞L  ( 0, ) ∞) , 

where is the usual space of square-integrable functions with unit weight. As we shall see later, the third 

integrability condition (on )is not necessary for eq. (2.3) to exist, but for our first proposition 2.1 below 

we assume it.  

L2

j0

Y

 The economic interpretation of the initial condition f r0 2 0 ∈ ∞L , ( , )

r g( / ) [S f 0
∞
∫

 can be seen by translating this 

condition back into S-space (stock price space), where it reads . We show below 

that 

( ) ]S dS2
0 < ∞

ρ( ) exp( )y= .  Because r g( / )S  diverges at both S = 0 S and = ∞ , the contingent claim must have 

a payoff which vanishes at both boundaries in a prescribed manner. It is perhaps simplest to think of the 

initial conditions for this case as defining a function class that includes those payoff functions  which 

strictly vanish outside of any finite interval that does not include the origin (a compact payoff)  An example 

of a compact payoff is the so-called butterfly spread, where one buys one call option striking at , sells 

two calls striking at , and buys one call striking at , where K2 0> K3 0> K K2 1 K3= +( ) / . A second 

example, further discussed following Corollary 2.1, is a barrier option with a constant (step-function) payoff 

in an interval.  

 The strongest economic effect of the condition f r0 2 0 ∈ ∞L , ( , )  is in the valuation of very long-dated 

options. A very long-dated option has a value determined by the payoff function and the behavior of the 

stock price over long time periods. In the model here, the stock price S will typically be found  near (or at) 

S = 0  or at very large values after a long time. So, if the payoff function is compact, the stock price will, 

with increasing probability, lie outside of the range of positive payoffs. Consequently, the option value will 

be very small. In fact, the exact solution will show that the value of the generalized option with payoff , j0
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where , will decay exponentially in time at a certain characteristic rate. In contrast, the payoff 

functions for traditional call options, which are not compact and which do not lie in 

f r0 2 0 ∈L , ( , )∞

L2 0, ( , )r ∞ , retain 

significant value even when the option is very long-dated. So, the decay rate is zero. The payoff function for 

traditional put options also lies outside of L2 0, ( , )r ∞ . Put option values, when the dividend rate D > 0

)−r

, have 

a bankruptcy component  which decays exponentially at the time value of money rate exp( t ; this rate is 

different than the characteristic decay rate of options in the L2 0, ( , )r ∞  space. Mathematically, these 

different value decay rates are determined by the location of poles of in the complex s (or F l ) plane. And, 

in turn, as we shall show, the location of the poles is determined by the behavior of the payoff function j 0  

at very large and small stock prices. 

l l( , ))t x d
c

c

exp[
i

i

i
= −

− ∞

+ ∞

∫

λ 1

3

p( )L λ ∈c(

l( ) (
( )

g
c L

( )>

j ( ) exp(xm m l l)d ]( , ) ex t t−   

=n 1 n

L xm
( ) ( )a

0
∞
∫ )]S dS2 < ∞ 

β exp( )y y y= − iµ( )/− +1 2 µ m =    β − d cm =  1

m− )3)- 2− +4

 

2.7 The General Form of the Solution 

Once we have determined Φ( , )x λ , then the solution to eq. (2.2) is given by the usual Laplace inversion: 

(2.4)                                      j
p

l d( , ) ( ) ]x t +
1

2
 F                                        

where the real number χ is to the left of any singularities in the complex -plane (contour C  in Figure 2). 
We will complete the contour along the arcs and contours  and C  shown in the figure.  In general, the 
result of evaluating eq. (2.4) via the Residue Calculus consists of contributions from both a point spectrum 

C2

λ m∈ , where m is an integer label, and a continuous spectrum )L . More specifically, we can 
anticipate a  result of the general form 
                      

                    .                                  j d l l j
l l

xp( ) ) ) exp([
( )

t g t x
m

m= − − +
∈ ∈
∑ ∫

p
 

L

 

2.8 The Value of a General Claim and the Value of a Call Option. L2

With the background discussions completed, we are ready to state the first proposition, which assumes the 

integrability condition . (Notation:  we use f r0 2 0∈L , ( , )∞ q b  when b >  and zero otherwise, 

 for the Gamma function, and for the associated Laguerre polynomialsG( )z 2. Finally, as  a 

summation index [x] denotes the greatest integer contained in  x). 

  

 Proposition 2.1.   Within Model I, assume , where the weight function r g( / )[ (S f0

ρ( ) . Also define aµ β=  ,  c iµ = +1 2 , c m−2 2 , and m − . 

Finally, define the eigenvalues . Then, the solution to eq. (2.1)  is given by λ βm = ( βm −/ ( 3
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(2.5)                            f S g
m

m m S m( , ) =    t q h s d l tb

b
g

( )

[( ) / ]

( ) exp ( )[ ]>

−

=
∑ − +3

3 2

0

1
2

2    

                                                                +
0

1
2

2 2
∞

∫ − +g d
S

( ) ( , )exp ( )[ ]m h m s d m t mg   , 

(2.6)      where                              g d
m m

y y f
y

dym
m

m
=

− −
∞
∫! (

( ) ( ) ( )
)G b

r h
g

2 0
0 ,                                               

(2.7)                                              ,                                                                    η β
m

m m
m
dx m x x L m( ) ( ) ! exp( ) ( )( )= − −− −1 2 x

(2.8)                                              g y
y

dyc a( ) (sinh ) ( ) ( , ) ( )| ( )|m mp pm r h m
g

m m= − −
∞
∫2 2

02
0

   G y f

x

, 

(2.9)      and                                 .      h m m
m m m( , ) exp( ) ( , , )x x x U c a ca= − −

  

 Proof:   See Appendix I. 

 

 Corollary 2.1.  Denote by  the modified Bessel function of the second kind of order ν. K xν ( )

Then under Model I, and with the same assumptions and notation as Proposition (2.1), but in the particular 

case r = σ 2 , the solution to eq. (2.1)  is given by 
 

(2.10)                                        f S g d
S

( , ) ( ) ( , ) exp[ ]( )t m h m s m
t

mg= −
∞

+∫ 0

29 4 2
8

, 

(2.11)      where                         g y Ky
i

y
y

( ) sinh
cosh

exp( ( ) ( )( )/ )m
m pm
p pm

m
g=

∞−

∫
2

3 2

3
2

0
0 2 2

  f dy , 

(2.12)      and                            η µ
π µ( , ) exp( ) ( )x x Kx

i
x= −

2 2
.                                                           

         Proof:  Since b = 2 , there is no discrete spectrum. Then, the result follows from the continuous  
spectrum component of  Proposition (2.1) and the known identities | (  and  / )| / coshΓ 1 2 2+ =iµ π πµ

x K x)U x x( / , , ) ( ) exp( ) (/ν ν π ν
ν+ + = − −1 2 2 1 2 21 2     . 

  

 An Example. Consider a step-function payoff where f S0 1( ) =  for 0 0 1< < < < ∞S S S , and 

vanishes otherwise. Let b < 3 so there is no discrete spectrum. Using footnote 5, we find                  
 

(2.13)                   g a S U a c S U a ca a
S

a
S

( ) | | ( ) , , , ,[ ]( ) (µ γµ µ µ )γ
µ µ

γµ µ µ= − − −
− − 
2

1
1

0
0

. 

To obtain f S( , )t , evaluate 
0

1
2

2 2∞
∫ − +g d

S
( ) ( , )exp[ ( ) ]m h m s d m t mg    numerically. 

Next, we handle the problem of the call option payoff, which lies outside the scope of  Proposition 2.1. 
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 Proposition 2.2.  Within Model I,  assume the call option payoff, , f S C S S K0 0( ) ( ) ( )= = − +

where K  is the strike price.  With all other notation as in Proposition (2.1), the solution to eq. (2.1) is given 

by f S C S( , ) ( , )τ τ= , where 
 

(2.14)                         C S  S D
r

MS
S

( , ) , ,[ (( / )
( )

t bg
b

gb
= − − +

+
−1 2

2G
)]b

                                                  + − − −>

−
−

−q b bb

bg
b

g
( ) ( ) , , exp( )[ ]( / )

( )
( )1

1
1 1D

r
K MS

SG
tr  

                                                  + −>

−
−

=
∑q g x s d lb

b
g b g

( )

[( )/ ]

( ) exp( ) ( , ) exp ( )[ ]3

3 2

0

1
2

2
S S

m
m mS K + t  

                           + −− + −
∞

∫S K S K
S

( )/ ( )/ exp( ) ( , ) exp ( )[ ]1 2 1 2

0

1
2

2 2b b g
mx s d m+ dt m , 

 (2.15)  where                          x g g
m

SK m

m dm
m K m S

S K M m c M m c( , ) , , , ,( / )
( )! ( )

( ) (= − − −
+

+

2 2

2
2

G

g )  , 

 (2.16)   and                 x m p
m m

m
g m

m m m
g

m m m
g( , ) , , , ,| |( )

( )
( ) ( ) (S K U c a c U c a c

c a

i SK
i

K S
= − −

− −1
2

2

2

2 2
2

G

G
)− .           

  

 Proof: See Appendix II. 

Two special limits of Proposition 2.2 merit discussion: 
 
Recovery of the Merton solution as t →∞ .  Note that the first line of eq. (2.14) is the Merton solution7. 
The second line vanishes either because b < 1  ( r , or because of the factor <s 2 2/ ) exp( )−rt . Hence, the 
second line vanishes at least as rapidly as exp . In the third line, consider that 

, using the restriction 
(− / )s t2 2

l d l d bm + ≥ + = − >0 2 1( ) 4 b > 3 . Hence, the third line vanishes at least as 
rapidly as .  The behavior of the fourth line, at large exp( )−2 2s t t , is determined by the behavior of the 
integrand at small m . It can be shown that  as x mm = O( )2 m →

t 3
0 . In turn, this leads to the fourth line 

vanishing as . Since we assume exp( / )s dt t2 32 exp[ s2 ( ) / ]/ − +b t2 21 8 /−− =− 2 r ≥ 0 ,  ( b ≥ 0 ), the 
fourth line vanishes at least as rapidly as . exp(− / ) −s t t2 38 /2

 
Recovery of the Black-Scholes solution as . In this limit D → 0 g → 0  in eq. (2.14), which implies 
 

               C S S K r S K S K d( , ) exp( ) ( , ) exp[ ( ) ]( )
( )/ ( )/t q t x s d m tb

b b
m≈ − − + − +>

− + m
∞

∫1
1 2 1 2

0

2 21
2

. 

 
From the definition of U, as g → 0 ,                

              ( ) ( , , ) ( )
( )

( ) ( )
( )

( )g g gm m
K

U c a c
K

c
a K

c
c a K

i i− − ≈
g mi−

− −
+

−
− −

−2 1
1

1
2

G
G

G
G
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and                           ( ) ( , , ) ( )
( )

( ) ( )
( )

( )g g gm m
S

U c a c
S

c
a S

c
c a S

i i− ≈
g mi−

− +
+

−
−

−G
G

G
G

1
1

1 . 

 

When these last two terms are multiplied together to produce the integrand , only the cross terms 

survive in the 

xm ( , )S K

g → 0  limit because the factors of g cancel. [The other terms yield integrands which behave, 

for small g , as f i( )exp( ln )m m g± 2 . Such integrands are increasingly oscillatory as g → 0 , yielding 

contributions to C S( , )t  which vanish as O( /|ln1 |)g ].  In summary, and after some simplification, we have 

the leading behavior as g → 0 , 
       

               x
p

m
m m

m b b
( , ) [exp( )

( )( )
. . ]S K i z

i i
c c≈

− − − −
+

+ −

1
2

1

2
1
2 2

1
2

, 

 

using  and c.c. = complex conjugate. Using z K= ln( / )S x xm m( , ) ( , )S K S K= −  and making the change of 

integration variable to  yields n m s t= − iz / ( )2

 

                      x s d m t m x s d mm m( , ) exp[ ( ) ] ( , ) exp[ ( ) ]S K d S K d− + = − +
∞

−∞
t m

∞

∫ ∫
1
2

1
2

0

2 2 1
2

2 2  

 

                         = − − −
+

−
+

+
− −∞

− +∞

∫
1

4
2 2

2 2
2 2

1 2

1
2

1
2

2

2

p s t
s t

s t
s dt s tn

n n
nexp( [exp( ) . . ])

/( )

/( )
( )z

iz

iz i
ic

i
ic

c c d , 

using 

                                            c
z

1 2 1= − +
s t

b 
1
2

( )     and   c
z

2 2 1= − −
s t

b  
1
2

( ) . 

 

The integral may be evaluated by completing the integration contour as a rectangle in the complex -plane, 

where one side is along the real  axis, and using the residue theorem. The integrations along the  sides of 

the rectangle parallel to the imaginary axis vanish as these sides are extended to infinity. From the residue 

theorem, there are potential residue contributions at the poles 

v

v

n = −ic1 2, . Whether or not the rectangle 

encloses a pole depends on the sign of and the magnitude of c1 2, b . The cases are as follows: (I) the pole at 

 is enclosed if c  and any n = −ic1 1 0> b ≥ 0 . If  c1 0<  this first pole is not enclosed. (II) the pole at 

 is enclosed if  and n = −ic2 c2 0> b > 1. Otherwise this second pole is not enclosed. In addition, the 

integrals along the real -axis are evaluated using the formula, for a real and positive and c real and non-

zero: 

v

                                    exp( ) ( exp( ) ( | |−
+

= − −
−∞

∞

∫
a
ic

d i c ac cn
n

n p
2

22 2  sign ) F )a , 

 
where  is the cumulative normal functionF( )x 8 . The result is  
 

S K S K d S d r K d( )/ ( )/
( )( , ) exp[ ( ) ] [ ( )] exp( ) [ ( )]1 2 1 2

0

2 2
1 1

1
2

1− +
∞

>− + ≈ − + + − −∫b b
m bx s d m t m t qF F 2  
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using   and . Hence − =stc d1 1 2 t− =stc d2 C S S d K r d( , ) ( ) exp( ) ( )t ≈ − −F 1 F 2 , which is the Black-
Scholes formula. � 
 

Economic Interpretation, and Examples. 

 Numerical computations were performed in the Mathematica system. In that system, the confluent 

hypergeometric functions  and U a  (for complex parameters) are built-in functions and were 

evaluated at the (default) machine precision. The branch cut integrations, such as the 

M a c x( , , ) c x( , , )

dm  integration in 

Proposition 2.2, were performed with the built-in numerical integration function. The integrals were 

evaluated from m = 0  to a cut-off value for m  which was increased until no significant changes were 

observed. In general, these integrations take longer to perform as the time t  is reduced because the 

integrands become more oscillatory and the cut-offs must be increased until the exponential damping term 

 become effective. exp( /−s m t2 2 2)

 The most dramatic difference between the continuous dollar dividend model and the continuous 

yield model is the asymptotic behavior as τ→ ∞ . For example, using some typical parameter values, these 

two model values are plotted in Figure 1. As suggested by the figure, and already evident from the Merton 

partial solution, the continuous dollar dividend model tends asymptotically to a positive value. In contrast, 

the constant yield model value tends to zero. This can be simply understood by thinking of the call value as 

the discounted expectation  
 

(2.17)                 C S  r E X K r E X K K XS S( , ) exp( ) [( ) ] exp( ) [( ) ( ) ]t t tt t= − − = − − + −+ +
t

    = − − +F S r K P S( , ) exp( ) ( , )t t t ,  

which is put-call parity.  Note that F S r E XS( , ) exp( ) [ ]τ τ τ= −  is the fair value of a (modified) forward. A 

modified forward is the non-dividend paying claim with the payoff function , where  is 

the terminal stock price. As 

F S ST0 ( )∗ = T∗ ST∗

t →∞ , the put value vanishes, since  

   
   . 0 ≤ = − − ≤ −+P S r E K X K rS( , ) exp( ) [( ) ] exp( )t t t   t

 

Consequently, as t →∞ ,  C S F S O r( , ) ( , ) (exp( )).t t t≈ + −  Purchasing the stock today can be thought of as 

a claim on all the dividends paid up to an arbitrary time T plus the value of the stock at that time , which 

leads to . As 

ST

F S( , )t S E= − ru X duS u[ exp( ) ( ) ]t −∫   D0 τ → ∞ , the second term is simply the discounted 

expected value of  the dividend stream. To summarize, for an arbitrary time homogeneous dividend process:  
 

(2.18)        . C S S E ru X du O rS u( , ) [ exp( ) ( ) ] (exp( ))t t
t

t
≈ − − + −
→∞ ∫     D

0

In words, the call option value tends asymptotically to the stock price less the present value (Laplace 

transform) of the dividend stream. Now let us apply this to the two cases under consideration. 
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 First, in the case of the constant dollar dividend rate,  since  0 ≤ ≤D( )X u D , the dividend stream 

value is positive and bounded below by zero and above by D r/  . Consequently, we see that, as t →∞ , 

C S S D r( , ) /t ≥ −

E XS u[ ]

. In contrast, in the alternative constant yield model, where , it is well-

known that , which leads to  C S

D

S, ) exp

( )X u =  d

O( ) (exp

X u

S r uexp[( ) ]= − d F, ) S r( ( ( ))t t dt t≈ = − + − → 0 .   

 Since the two models have the same initial conditions, they obviously must converge in value at the 

other limit t → 0 . Table I shows the two model option values for some typical parameter values. Because of 

the noted large-time behavior, there is a general tendency (which is evident from Table I) for the constant 

dividend model values to be greater than their comparable constant yield model values. However, this is not 

always the case, which is illustrated in Table II , which reports difference values only and shows some 

negative entries. Table II can be understood from the idea that large strike prices favor the constant dividend 

model, since the dividend payments are relatively less for large increases in the stock price. Conversely, 

smaller strikes work against the constant dividend model, because of the relatively larger dividend payouts 

near the strike price and the increasing possibility of bankruptcy. 
 

2.9 The Bankruptcy Claim and the Absorption Kernel. 

The unit bankruptcy claim is defined to be a European-style claim paying $1 on expiration if the stock price 

has been absorbed at zero and otherwise paying nothing. Let B S( , )t denote the fair value of the claim with τ  

periods to expiration when the stock price is S . Then, because the claim can be expressed as the discounted 

expected value of its payoff cash flows, we can calculate it from  B S r A S( , ) exp( ) ( , )t t t= − , where 

A S( , )t is the probability of absorption by expiration. Explicitly,  

 (2.19)                                        , A S X t t X So o( , ) Pr{ ( ) , | ( ) }t t       = = ≤D 0 0 =

where  is the moment when the risk-adjusted process dXto rX X d Xdz= − +( ( ))D t s  first reaches the 

origin, starting from . X S( )0 =
   

 Proposition 2.3. Let A S( , )t be the absorption probability defined by eq. (2.19) and let    be 

the probability of ultimate absorption. Define 

A S∞ ( )

h m( , ),x

)

a m , , ,  and   as in Proposition 2.1 and 

denote the incomplete Gamma function by 

cm cm dm

G( ,b x . Then, A S( , )t and  are related by A∞ (S)
 

(2.20 )                            A S A S A S A Sp c( , ) ( ) ( , ) ( , )t t= t+ +∞ , 

(2.21) where                        A S
r

rS

∞

−
−

−=















( )
/

/( , )

( )

1                         
2

   

        
2

<

>

      
s

sb
g

b

2

21
1

1

G

G , 

(2.22)    
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   A S M m cp S
m

m

m
S

m

dm

m m

m m m S
( , ) exp( )

exp{ }
( , ,( )

( ) / ][
( )

!

( )

( )

[ ( )]

[ ( )]
t q b

b
g

g b b b s t

b b
g=

−
−>

−
−

=

− + − − − + − −

− + − −∑3

3 2 1
2

2

0

1 1 2 2 3

2 3
  

 

G
) , 

(2.23)   and                                A S g dc S
( , ) ( ) ( , ) exp{ [ ] }( )
t m h m m s t

g b= − − +
∞ −∫  1

20
2 1 2

4
2 m , 

 (2.24)  using    g
c a

i
( )

( )

( ) ( )
m

m
p

m m
m b

=

+

−

−

1
2 2

2
1

2 1 2

4

G

G
  .  

 Proof: It is known (see, for example, Karlin and Taylor (1981)) that A S( , )t satisfies the backward 

Kolmogorov equation 

(2.25)                                                   1
2

2 2
2

2s
∑

∑

∑
∑

∑
∑ t

S A

S
rS D A

S
A

+ − =( )     , 

subject to  A S( , )= =0 1t ,  A S( , )= ∞ =t 0 , and  A S S( , ) , ( )t = = >0 0 0   . Introduce the same reduced 

variables as before: x = Sg /  and t =s t2 2/ and let A S A x t( , ) ~( , )t = .  Define the absorption kernel to be the 

Laplace transform of the absorption probability with respect to the reduced time variable t; that is 

 

                   K x s st A x t dabs ( , ) exp( ) ~( , )= − t
∞
∫  

0
. 

With our same techniques, we find that  K x s x H xabs
a( , ) ( , )= s , where xH c x H aHxx x+ + +( ) = 0 . The new 

constants are determined by 2 1 1 42 1a s= − − − +( ) [( ) ] /b b 2  and c a= + −2 2 b  . Introducing 

l b= − + −[ ( ) /s 1 42 ]  , then in this notation a i and = − +( ) /b l1 2 c i= +1 2 l . We again place the 

branch cut in the complex l -plane along the positive real axis and define Im l > 0 throughout the cut 

plane. Applying the boundary conditions, we find 
                                     

              K x s
s

x M a c cabs
a
c

a c( , ) ( , , )( )
( )

= + −−
−

+ −G
G

1
2

11 1 2   x− − . 

The inversion contour in the l  - plane must lie to the left of the various poles. The controlling (left-most) 

case is the pole at s = 0 ; that is, l b* ( ) /= − − 1 42 . The residue at this pole is given by  

                        Residue at the pole l *    = 

( )

( )

( )

( )
( )

( , , )

b

b
b

b bb

<

>








−

−
− −−

1

1

1

1 11
G

x M x         

 

In addition, there are the Gamma function poles lm  determined by 1− = −am m  or, equivalently  

               l b
b

m m m= − + − −−( ) ( )3 2

4
3       m . = −0 1 3

2
, , ... , [ ]( )     b

and occur only if b > 3.  Consequently, in performing the Laplace inversion using the contours in Figure 2, 

there are three contributions. The contribution from the first pole yields the probability of ultimate absorption 
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A S∞ ( )

A Sc ( ,t

. The contribution from the Gamma function poles yields . The branch cut contribution yields 

. The explicit formulas, given above, are obtained by straight-forward computations.

A Sp ( , )t

) 9 � 

)Y− r

 

Economic Interpretation. The two cases of eq. (2.21) for the ultimate absorption probability A S∞ ( )   

represent parameter regimes where ultimate bankruptcy is either certain or merely possible. This can be 

understood by considering the growth rate process for the stock price, which is given by Y S= ln . From Ito’s 

lemma, dY Y dt dz= +m s( ) , where . If m s( ) / exp(Y r D= − −2 2 <s 2 2/ , the growth rate is always 

negative which leads to ultimate bankruptcy with probability 1. On the other hand, if r >s 2 2/ , the growth 

rate can be positive for large enough stock prices, and this allows the possibility of an ultimate escape to 

arbitrarily large stock prices. 
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2.10 The Bankruptcy Claim and the Green Function. 

Define the transition probability p S Z( , , )t  by 

(2.26)                                   p S Z X Z X S( , , ) Pr{ ( ) | ( ) }t t= ≤ =  0 . 

It also satisfies the backward Kolmogorov equation (2.25), but with the boundary conditions 

                               p S Z( , , )= =0 1t , p S Z( , , )= ∞ =t 0 , and p S Z S Z( , , ) ( )t q= = ≤0 .  

Note that we can write 

 (2.27)                    p S Z X X S X Z X S( , , ) Pr{ ( ) | ( ) } Pr{ ( ) | ( ) }t t t= = = + < ≤ =0 0 0 0        

                      . = + ∗D A S p S Z( , ) ( , , )t t

The second term in eq. (2.27) is the probability of the stock price being less than or equal to Z conditional 

on no absorption by τ. The first term is given by Proposition 2.3. Consider the transition density 

. The Green function G S Z p Z p Z( , , ) / /t ∑ ∑ ∑ ∑= = ∗D G S Z( , , )t  is a solution to the backward Kolmogorov eq. 

(2.25) with the boundary conditions G S Z( , , )= =0 0t , G S Z( , , )= ∞ =t 0 , and G S Z Z S( , , ) ( )t d= = −0 , 

where d ( )•  is the Dirac delta function. 
  

Interpretation. The function exp( ) ( , , )−r G S Zt t has the economic interpretation of an Arrow-Debreu 

security for Model I.  That is, it represents the value of a contingent claim that pays nothing unless the 

particular state S Z= > 0

Z( ,

occurs upon expiration of the claim. As one sees from its construction, one must 

carefully integrate G S , )t  to obtain p S Z( , , )t ; the integration constant is important because it is also the 

absorption probability. Equivalently, in constructing the value of a general claim from the Arrow-Debreu 

claim, the integration constant represents the value of the bankruptcy claim. This idea is developed explicitly 

in our discussion in Section 2.11 on the value of the put option. 
  

 Proposition 2.4. The function G S , where Z f S Z( , , ) ( / , / / ),t g g g s t= -1   2 2

(2.28)  f x y t x x m
d

xy L L t
m m

m
m
d

m
d

mm m( , ) =    (x) (y)      , exp( ) !
( )

( ) exp( )

[( )/ ]
( ) ( ) ( ){ [ ] }q lb

b
b

b
>

−
−

− −
=

− −∑3
2

3 2

0

1 2

4G
+  

+ − − − − +− −∞ −∫x x g xy U c a c x U c a c y t
c ab m mm m

m m m m m m
b2 2

0

1 2

4
exp( ) ( )( ) ( , , ) ( , , ) exp{ [ ]( ) }     dm , 

 (2.29)   using                               g
c a

i
( )

( )

( )
m m m

p m
=

−1
2 2

2G

G
 . 

 Proof:  Since  G S Z f S Z S( , , ) ( ) ( )t d= = = −0 0 , the integrability assumptions of Proposition 2.1 

are satisfied. Moreover, eq.(2.5) yields a solution to eq. (2.1) that must vanish at both S = 0  and 

S = ∞ because of the integrability condition. In addition, it can be interpreted as exp( )−rt  times a solution to 

the backward Kolmogorov eq.(2.25). Hence, this particular solution must be exp( )−r G( , ,S Z )t t , with the 

explicit formulas given above. � 
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The Conservation of Probability. After a finite time, the risk-adjusted process dX rX X d Xdz= − +( ( ))D t s  

beginning at  must either have been absorbed at the origin or be found at some X ( )0 = S Z > 0 . This suggests 

the following proposition: 

 

 Proposition 2.5 (Conservation of probability). With the absorption probability A S( , )t  given by 

Proposition 2.3 and the Green function G S Z( , , )t given by Proposition 2.4, we have 
   

(2.30)                         1 0= +
∞
∫A S G S Z dZ( , ) ( , , )t t . 

 Proof: See Appendix III. 

 
Additional Remarks. 

(i) To verify that, indeed,  is given by the lognormal density, let lim ( , , )D G S Z→0 t g → 0 in eq. (2.28). In this 

limit the first line with the discrete sum vanishes, and in the second line    

                               g xy U c a c x U c a c yi( )( ) ( , , ) ( , , ) cos(m
p

mm
m m m m m m− − ≈

1 z) ,         

 using z Z= ln( / )S . Then, using 

                                      cos( ) exp( ) exp( )m m m
pz t d
t

z
t

− = −∞
∫ 2

0

21
2 4

, 

we find             G S Z
Z

z z( , , ) exp ( ) ( )[ ]t
ps t

b s
t

b
s t

= − − + − −
1

2
1

8
1

2 22
2 2

2

2  

                  = −
−1

2 22

2

2
Z

z

ps t

mt

s t
exp ( )[ ] ,      where    , m s= −r 2 2/

which is the lognormal density. 

(ii) Note that G S Z( , , )t also satisfies the forward Kolmogorov (or Fokker-Planck) equation with respect to its 

second argument:  

             1
2

22s t( ) [( ) ]Z G rZ D G GZZ Z− − = . 
 
(iii) Technically, G S Z( , , )t  was only defined for Z > 0 because p S Z( , , )t  was only defined for  Z > 0. 
However, in fact: 0

0→
lim (
Z

G S< <, , )Z ∞t . 

 

2.11 The Value of  the Put Option. 

Given our calculations so far, there are at least three ways to compute the fair value for a put option: (I) the 

discounted expected value method, which is an integration from the complete transition probability, or (II) 

using put-call parity, or (III) a direct calculation from the differential equation analogous to the call option 
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calculation We will report results from both methods (I) and (II) since they lead to formulas that look 

different although, in fact, they agree with each other. 
 

Method (I): The discounted expected value.   

Like most European-style contingent claims, the put option value can be thought of as the discounted 

expected value of its payoff function (assuming this expectation exists). In terms of the absorption 

probability and the transition density given in the previous section, this interpretation is expressed by 

P S P S P S( , ) ( , ) ( , )t t= +1 2 t

t

, where  
 

(2.31)            ,   and  P S r A S K1 ( , ) exp( ) ( , )t t= −  P S r K Z G S Z dZ2 0( , ) exp( ) ( ) ( , , )t t t= − − +∞
∫  .                     

In words, this means that the put option is worth a bankruptcy claim plus its discounted expected terminal 

value, the latter conditional on no absorption or bankruptcy. The bankruptcy claim (part 1 value) is reported 

in Proposition 2.3. 
 

 Proposition 2.6 The function   , where P S f S K2 2
2 2( , ) ( / , / , / )t g g g s t=   

(2.32)       f x k t x x x
d

L x I k t
m

m

m
m
d

m mm2 3
2

0

1 2

4

3 2
( , , ) exp

( )
( ) ( ) exp( )

( ) ( )
[( )/ ]

{ }[ ]= −>
−

=

− +
−

∑q lb
b b

b

(- )     
G

+  

             + − − −− −∞
+

+
∫x x g k x U c a c x t

c ab m m bm m m m m m2
0

1 2

4
2exp( ) ( , ) ( , , ) exp [ ]{ }( )  d , 

(2.33)     using                     I k
c
c

k
jm

j

m m j
m j m j

m m
m j

j m
( )

( )
( ) !

( )

( )( )
=

=

−

+ − + −

− −

∑
0

2 1

2
, 

(2.34)      and            g k
c a

i

k
c a

U c a c k k( , )
( )

( )

( , , )

( ) ( ) ( )[ ][ ] [
m

p
m m
m

m m
m m m

m
b

m
b

m
b

=
− −

− −
− −

+
−

+
+

−
−

+
−





















1
2

2 1
2

2

2 1 2

4
2 1 2

4

1

2 1 2

4

G

G
 

        

]
. 

 Proof: Compute P S r K Z G S Z dZ2 0
( , ) exp( ) ( ) ( , , )t t t= − − +∞

∫  , using G S Z( , , )t from Proposition 

2.4 and the integration formulas given in the footnotes. 
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Method (II): put-call parity. Use the put-call parity eq. (2.17) and the following Proposition: 

  

 Proposition 2.7  The value of the modified forward F S( , )t  is given by 

(2.35)                          F S S D
r

MS
S

( , ) , ,[ ( )( / )
( )

t b
g
b

gb
= − − +

+
−1 2

2G
]b  

                                               + −  − t>

−
−

−
q b bb

bg
b

g
( ) [ ]( / )

( )
( ), , exp( )1

1
1 1D

r
M rS

SG

                       + −  + t>

−
−

=
∑q g x s d lb

b
g b g

( )

[( )/ ]
( ) exp( ) ( , ) exp ( )[ ]3

3 2

0

1
2

20
S S

m
m mS      

                                          + −+ −
∞

∫S h S
S S u( ) exp( ) ( ) exp ( )( )/ [ ]g b g s d m t m1 2

0

1
2

2 2 + d , 

(2.36)    where                x g g
m

S m

m dm c m S
S M

m m
( , ) , ,( / )

( )! ( )( )
( )0

2

2 2
= −− +

+ +G
m c  

 (2.37)     and                    h S
S

U c a c
Su

c a

i
i( ) ( ) ( , , )| |( )

( )
= −

− −1
2

2

2

2

p
m m

m
m

m m m
g gG

G
 . 

 Proof: Use , where the limit is taken in the Proposition 2.2 result for F S C S
K

( , ) lim ( , )t =
→0

t C S( , )t . 

Discussion. Let us first review why the two put formulas must be identical. First, define 
 

    I S K r Z K G S Z dZ
K

( , , ) exp( ) ( ) ( , , )t t t= − −
∞
∫

D  

Then, rearrangement of the integration limits yields 
                    

 P S P S r A S K K Z G S Z dZ1 2 0
( , ) ( , ) exp( ) ( , ) ( ) ( , , ) ]t t t t t+ = − + − +∞

∫ [     
∞

                                = − + + −∫exp( ) [ ( , ) ( , , ) ] [ ( , , ) ( , , )]r K A S G S Z dZ I S K I St t t t  0 0 .t

=

 

 

But  by Proposition 2.5. We note that  (i) A S G S Z dZ( , ) ( , , )t t+
∞
∫  0 1 G S Z( , , )t is a solution to the option 

valuation eq. (2.1), (ii) G S K( , , S K) ( )t d= = −0 ; hence , (iii) I S K( , , )t = =0 S K( )− + I S K( , , )t < ∞  because 

it was computed explicitly in Appendix II. Hence, we conclude that I S( K, )C S K, ) ( , ,t t= , or in 

summary, P S P S P S( , ) ( , ) ( ,t t= + r K) exp( )t = C S( ,t K C S, ) ( , , )t t− + −1 2 0 , which is the assertion.  

 Table III gives numerical examples; we show the breakdown of the total value into the two parts of 

Method I and we have also verified that the Method II formula produces the same numerical values. 

 19



  3.  THE TERM STRUCTURE OF INTEREST RATES 

 

3.1. Problem Definition. 

In this section, we discuss the valuation of arbitrage-free bond, bond option, and other generalized contingent 

claim prices in a stationary, single factor, interest rate term structure model. In this theory, we can continue 

to use notation from the earlier section but with these interpretations:  now  becomes the non-negative 

random interest rate at time T. A (non-coupon paying) bond or other generalized claim expires or matures at 

time 

rT

T* , at which time it has the specified payoff . Model II is closely related to Merton's (1975) 

process for the short-term interest rate , which he deduced from an economic 

growth model. Under the further assumption that the market price of risk is a constant, then arbitrage 

arguments show that the value of the claim 

f r
T0 (

*

br dT( )2

)

dr a r rdz= − +s  

f r( , )t  again depends only upon  and rT t = −T T* . The claim 

satisfies (Model II): 
 

(3.1)                                        1
2

2 2
2

2
2s

∑

∑

∑
∑

∑
∑t

  r f

r
Ar Br f

r
r f f

+ − − =( ) ,                                                                     

 

where t > ≤ <0 0,  r ∞ 0, and A B> > >0 0,  and s  are constants independent of r. For the pure discount bond 

, but we handle general payoff functions, again subject to certain integrability restrictions. 

Depending upon the parameter values, the risk-adjusted interest rate process underlying eq. (3.1) may have a 

steady-state probability distribution; when it does, we call this the equilibrium case. When no such 

distribution exists, we call this the non-equilibrium case. Our solutions provide the dynamics for both cases. 

Model II has the virtue that percentage changes in rates have constant variance, which is perhaps the natural  

extension of eq.(2.1) to fixed income securities. Note that if one wants to value a coupon bond with 

continuous payment of D dollars per year, the coupon bond solution 

f r
T0 *

1( ) =

f r D( , ; )t  is determined by an 

integration:         

                                                    .  f r D f r D f r s ds( , ; ) ( , ) ( , )t t t= + ∫  
0

Boundary Conditions. Both the origin and infinity for r are singular points, and hence do not necessarily 

admit the specification of boundary values. The underlying risk-neutral process is 

, starting at dX AX BX d Xdz= − +( )2 t s X ( )0 r= . Since we assume A, B, and σ  positive, then by Feller’s 

criteria, both the origin and infinity are natural boundaries. Hence, solutions to eq. (3.1) are determined 

uniquely by the initial conditions (payoff functions) and no other boundary conditions may be specified. As 

in  Model I, we begin with a general payoff function that is square-integrable with respect to a weight 

function and then subsequently consider the particular payoff function associated with the discount bond. 
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 Proposition 3.1.   Within Model II, assume , where the weight function  

, using , and .  Also define 

r g( )[ ( )]r f r dr  0
2

0
∞
∫ < ∞

g s2 2B /r b( ) exp( )y y y= −2 − sb = 2 2A/ = a = 1/ B ,  ,  

,  c ,  and  c

w b= −( ) /1 42

am a b= − − +( ) /1 2 i im= +1 2m m mm  = − −b a2 2 .  Finally,  define eigenvalues 
l b am m= − − − −( 1 2 2 42) / . Then, the solution to eq. (3.1)  is given by 

 

(3.2)                          f r g r
m

m m m( , ) =   {   t q h g s w lb a

b a

( )

[( )/ ]

( ) exp ( )[ ]> +

− −

=
∑ − +1 2

1 2

0

1
2

2 t  

                                                                       + − ,                        +
∞

∫
0

1
2

2 2g r d( ) ( , ) exp ( )[ }m h g m s w m t m]

(3.3)          where                     g c y y f y dm
m

m m m= y−
− −

∞
∫

( ) ( ) ( ) ( )
! ( )

1
2 0 0G b a

r h g  ,                                     

(3.4)                                        h
a b

a  m
m

m
m

mx c x M m c( ) ( , , , )( )
( )

( )=
−

+ − +
− +G

G

1
1 2

 x− ,                                                                       

(3.5)                                        g
a

y y f y d
i

( ) ( ) ( , ) ( )| |( )
( )

m
p

r h m gm
m

=
∞
∫

1
2 2

2

0 0
G

G

  
 y

x

,                                       

(3.6)          and                        .                                                             h m m a
m m( , ) ( , , )x x U a c

a
=

−

                                                                            

  Proof (Sketch): The model is similar to Model I after substitutions, so we just indicate the 

differences. In eq.(3.1), let x Br= 2 2/s , t =ts 2 2/ ,  f r x t( , ) ( , )t j= , and . Then j j( , ) ( )x x0 0= j ( , )x t  

satisfies   

(3.7)                                     , Bj j b j a j    = + − − =D x x x xxx x t
2 2( ) j

 

where  and 0t > 0 < < ∞x . Equivalently, the Laplace transform  satisfies . Substitute 

, yielding 

F( , )x s ( )B − = −s F j 0

FH x Hkx s( , ) = x s( , ) xH c x H aHxx x+ − − =( ) 0 , where a = +a k , c = +b k2 , and 

.  Note the sign changes from Model I.  k b −( ) w ] /1 2= − 1 2 + +/ [s

 The substitution u z , where s x x H x sc( , ) exp( / ) ( , )( )/= − −2 1 2 x z z( ) exp( )= ,  again yields 

. But now we have Lu u q z uzz= − + =( ) l u q z z( ) exp( ) / z) exp( )( /= + −2 4 2a b  and l w= − +(s ) . In 

this notation a i   , = −a b − 1 + l( ) / 2 c , and i= +1 2 l k b= − −( ) l+/1 2 i . 

 Appropriate solutions x ∈L  and r2 0, ( , )X h r∈ ∞L2, ( , )X  to ( )B + + =w l F 0  are 
 

                                            , x l k k( , ) ( ) ( , , )x x w x x M a c cc= = − + −+ −
2

1 1 2 x

xand                                      . h l k k( , ) ( ) ( , , )x x w x x U a c= =5
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The Wronskian of these two solutions is , and hence , where K x( ) exp( )l b−x

c

r lb( ) exp( ) / ( )x x x K= − −2

K c a( ) ( ) / ( )l = − − − +G G2 1 . Bound states exist only when b a> +1 2  and the eigenvalues are given by 

 for l b am m = − − − −( )1 2 2 2 4/ m = − −0 1 1 2, , [( ) / ...  , ]b a . We find , but now 

 and . 

Analogous calculations to those in the Appendix I proof of Proposition (2.1) again yield a point spectrum and 

continuous spectrum contribution 

x hm m mk=

m m( ) / (l a b− + − + −1 2 2 1 2km = + − + +G G( ) /1 2 1 2a b m m+ 2

j j=

−( a b ) K m' ( ) (= −

j

mb 2m) !+1 G )a +

+p c , where now  
 

(3.8)                            ,                            j q h wb a

b a

p
m

m m mx t g x t( , ) ( ) exp[ ( ) ]( )

[( )/ ]

= −> +

− −

=
∑1 2

1 2

0
l+

l l+(3.9)                             ,                                                                         j l h l wc x t g x t d( , ) ( ) ( , ) exp[ ( ) ]= −
∞

∫0

(3.10)                          g y y ym
m

m m m= −− − −
− −

− y dy
∞

∫( )
! ( )

exp( ) ( ) ( )b a
b a

b h f2 1 2
2

2
0

0G
,                                  

(3.11)                         h ba b
a b

a
m

m
m

mx x M m( ) ( , , )( )
( )

( )= − −+ − +
+ − +

− +G

G

1 2 2
1 2

2 2a m x− ,    

(3.12) and                   g y yi
i

( ) exp( ) ( , ) ( )| |[( )/ ]
( )

l h
p l

b a l
l

b= −− + + −∞

∫1
4

1 2
2

2 2
0

0
G

G
 y y dyl f

=

.                 

Changing integration variable to  yields the proposition as stated. � l m= 2

 

 Proposition  3.2.   Within Model II, assume the discount bond payoff   and the 

other notation from Proposition 3.1 above. Then, the solution to eq. (3.1) is given by 

f r B r0 0 1( ) ( )=

 

(3.13)                                      B r f rU r( , ) ( , )( )
( )

( )
( , , )t q b

a b
b

a b g= ≤
+ −
−1

1
1

G

G
t+ ,                                           

 where  f r( , )τ  is given by eq. (3.2), and within which one may substitute 

(3.14)                                       g cm m m
m

m
= − − − −

− −
( ) ( ) (

! ( )
a b a

b a
1 1

2
G

G m
) ,                                                        

(3.15)       and                         g
a a

i
( )

( )

( ) ( )

( )
| |m

p a
m a m

m
=

−1
2 2

2

G

G G

G
    . 

 

 Proof:    There are two cases to consider when f r0 1( ) = , namely,  (i) b > 1  and (ii) b ≤ 1 . Suppose 

(i) b > 1 . Since , this case is encompassed by the general result of Proposition (3.1). The 

integrals for  and  exist and are given in footnote 6. Then, a fair amount of manipulation with 

Gamma functions yields the formulas (3.14) and (3.15). Next, suppose (ii) 

f r0 2 0∈L , ( , )

g( )m

∞

gm

b ≤ 1 .This situation is analogous 

to the call option payoff for Model I. If we again abbreviate − = +( , ) ( ) ( , )x x x I xl h l l x lF , ) ( ,I ) ( ,x l1 2 , then 
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      I x y y dy
x

1 0
( , ) ( ) ( , )l r x l= ∫ = −− − −

−
− −∫1 3 2 1

2
1 2

0K
i i i

x
y y M

( )
( )/ ( )exp( ) ( , , )

l
b l a

b
l l y dy

)

 

. 

One can show that  has a  pole at , with residue I x1( , )l l l b w= = − − = −i ( ) /1 42 G G( ) / (1 1+ − −a b b

f r( , )

. 

Moreover, since , the  pole generates the additional bound state term 

 in addition to the already identified contribution 

h l( , i

a bU x( , , ) (

a b) ( , ,x U=

a b ) / (+ −1G

)x

b )−1Gj q bp x t( , ) ( )= ≤1 t .� 
 

3.2. Economic Interpretation and an Example. 

 When there is an interest rate equilibrium, one expects a reasonable term structure model solution to 

behave for large time to maturity as , where B r g r( , ) ( ) exp( * )t l≈ − t l *   is the principal eigenvalue for the 

(negative of the) operator on the left-hand sides of eqs. (3.1) (or their equivalents in other models). And one 

expects that l *  will be strictly positive so that the yield curve, which is given by R r B r( , ) [ln ( , )] /t t t= − , 

will flatten to a strictly positive rate of interest . Consider eq. (3.13) as t →∞ . Think of A and B as fixed and 

s 2  increasing from zero. There are three regimes of behavior depending upon the balance between the 

parameters: (a) ; (b) ; and (c) s 2 2 2< +AB B/ ( ) 2 2 2AB B/ ( )+ ≤ <s 2 A s 2 2> A . These regimes can be 

characterized as follows: 
 

(a) Equilibrium with the drift term dominant. In this regime, the deterministic drift term of the underlying 

stochastic differential equation dominates the (random) volatility term. The equilibrium probability 

distribution for the interest rates is relatively sharply peaked in the vicinity of A/B . From the solution, one 

sees that there is a point spectrum contribution with the principal eigenvalue given by  

     l s  w l
s* ( ) (= + = −1

2
2

0
2

22
1A

B B
B)+

(b) Equilibrium with a balance between the drift and volatility. In this regime, there is no point spectrum 

contribution to the yield curve. The strictly positive asymptotic yield is determined by the smallest element 

of the continuous spectrum, where 

                                                            l s w
s

s
* ( )
= =

−1
2

2
2 2

2
2

8

A  

(c) Non-equilibrium (volatility dominates). We can see from the previous equation that, as s 2  approaches 

2A from below, the asymptotic yield drops to zero. In this regime, one sees from eq. (3.13) that the 

asymptotic bond price tends to a constant; in this case, there is no stationary rate distribution and the 

asymptotic yield is always zero. If one considers the growth rate process Y r= ln , then it is easy to see from 

Ito’s lemma that the expected growth rate is always negative in this parameter regime. Hence, although we 

know the origin is a natural boundary and can never be reached by the risk-neutral r-process, there is an 

almost certain probability of localization of the interest rate r  near the origin as time grows large. T

 23



 Two cases, equilibrium and non-equilibrium, are illustrated in Table IV with some typical parameter 

values. As one sees, with equilibrium, an asymptotic yield exists but the price tends to zero; without 

equilibrium, an asymptotic price exists, but the yield tends to zero. Hence, we can characterize equilibrium as 

being associated with a strictly positive principal eigenvalue. These features are expected to be general 

characteristics of stationary term structure models, including multifactor models. 
 

 

4. SUMMARY AND EXTENSIONS 

 

 We have provided solutions for two relatively old problems by some methods which have general 

applicability to similar problems in finance. Eigenfunction expansions are very powerful and we have shown 

how to overcome the main technical difficulty, which is how to generalize the standard method to the case of 

payoff functions that are not square-integrable with respect to the natural weight function of the problem.  Of 

course, most problems do not admit exact solutions. But, once one realizes the important role played by 

certain eigenvalues, one is also led to new approximate methods. For example, once one realizes that the 

yield curve at large times to maturity (in stationary models) is determined by the principal eigenvalue of a 

differential operator, one can use other techniques (such as variational methods) to explore this regime. 

These extensions of this work are discussed in Lewis (1994).   
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Appendix I: Proof of Proposition 2.1 

 

The general solution u z( , )l  to Lu = ul  is given by 

(A1.1)             u z A i z e M a c e B i z e M a c c ez z z( , ) exp( ) ( , , ) exp( ) ( , , )l l l= + − + − + − + −1
2

1
2

1 2 z− . 

In the complex λ-plane, place a branch cut along the real axis to keep l  single-valued. Define the square 

root so that Im l  throughout the plane. Along the inversion contour Im . In order for l > 0 u z( , )l  to be 

square-integrable as , we clearly must choose z → −∞ A = 0 . Hence   
  

(A1.2)                   ,                    x l p( , ) ( ) exp[ ( ) ] ( , , )x x w x i c x x M a ca a c= − = − − − −+ −
2 1 11 x2

 

where we have used Kummer's transformation3. Next, consider z → +∞  in eq. (A1.1). Using the known 

asymptotics4, we have the leading behavior 

                                        u z A B e zc
c a

c
a

z( , ) [ ] exp[ ( ) ]( )
( )

( )
( )

l b≈ + −
−

−−
−

G
G

G
G

2
1

1
2

1
2

1  . 

This last expression cannot be in  unless we select A and B such that the expression in the brackets 

vanishes. From footnote 1, a candidate is  

L2 0( , )∞

(A1.3)                                .                                    h l( , ) ( ) exp( ) ( , , )x x w x x x U c a ca a= − = − −7 x

∞One can then readily confirm . The Wronskian of the two solutions is  h r∈ L2, ( , )X

 (A1.4)                             W .                                                                    ( ) exp( ) ( ) exp( )( )
( )

x x ic x K xc
a

a c= − − ≡−
−

−G
G

2
1

2 p l b x−−2

Evaluate eq.(2.4) by completing the integration contour as indicated. It can be shown that there is no 

contribution from the large quarter-circles in the limit that they recede to infinity. As shown by Titchmarsh 

(1962, Chapt. II, Section 2.6) in a more general context,  the only singularities of F( , )x l  as a function of l   

are (i) simple poles on the real λ-axis due to the vanishing of the Wronskian and (ii) the branch point 

singularity at the origin. (Titchmarsh's demonstration fails for the call option payoff: see Proposition 2.2). 

The Wronskian vanishes with K( )l , which occurs at the poles of  G(1 )− a ; that is, when  
  

(A1.5)                          l b bm m= − − + − −1
4

23 3( ) ( m) ,          m = 0 1 2 31
2

, , ,..., [ ( )]b − ,                    

where [  denotes the integer part of x. This is the point spectrum as stated in the proposition; for it to exist 

at all, we must have 

]x

b > 3.  At these points: a a mm= = +1 ,  c c mm= = − +4 b 2

x2

, and 

(A1.6)                ,                x x l p b bb
m m

mx x i x x M m m( ) ( , ) exp[ ( ) ] ( , , )= = − − − − −− −D 3 22

(A1.7)                h h l bb
b

b
m m

m
m

mx x x x M m m( ) ( , ) exp( ) ( , , )( )
( )

= = − − − −− +
− +

− −D G
G

3 2
3

2 2 2 x ,             
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so that . The constant  is used below. It is known that confluent hypergeometric 

functions, when the first argument is a negative integer, are proportional to Generalized Laguerre 

Polynomials

x hm m mx k x( ) ( )= km

m[2.  Specifically, , so equivalently,   M m x L xm m( , , ) !/ ( ) ] (( )− = −a a a 1 )

x2

b 5

 

(A1.8)                            ,                       h b b
m

m m
m

mx m x x L( ) ( ) ! exp( ) ( )( )= − −− − − −1 2 3

which is eq. (2.7) of the proposition. For example,  and 

. Using the Residue Theorem, the point spectrum contribution to 

h bb
0

2 3= − >−exp( ) , ( )x x

h bb
1

3 4= − − − >−exp( ) [ ( )], ( )x x x

j ( , )x t is given by       
 

(A1.9)       j q d l h h jb l
b

b

p m
km

K mm
m mx t t x y y y y dy( , ) exp [ ( ) ] ( ) exp( ) ( ) ( )( ) ' ( )

[( )/ ]
= − +>

−

=

−∞−

∑ ∫3
0 0

0
3 2

 .    

After some algebra, eq. (A1.9) can be written 

(A1.10)                             ,                                                                     j q h d lb

b

p
m

m m mx t g x t( , ) ( ) exp[ ( ) ]( )
[( )/ ]

= >
=

−

∑3
0

3 2
− +

(A1.11) where                   g y y ym
m

m m m= − −
− −

− y dy∞
∫

( )
! ( )

exp( ) ( ) ( )b
b

b h j3 2
2 0

0G
  ,                                                                          

 

which is eq. (2.6) of the proposition. To obtain eq. (A1.11),  we have used the formulas  

 

 (A1.12)              K i mm
m

m
' ( ) exp[ ( )] !(

( )
l p b b

b
= − m)− −

− +
G 2 2

3 2
   and      ( ) ( ) (

( ) (
− = )

)
− + − −
− + − −

1 3 2 2 2
3 2

m m
m

G G
G G

b b
b b

m
m

.                                      

 

For example, by choosing  in eq. (A1.11) and letting t = 0 in eq. (A1.10), one obtains the 

orthonormality condition  

f h0 = k

       y y∞
∫ y y dy m m

mk m km
− =

− −
− −

b h h d
b
b

exp( ) ( ) ( ) ! ( ) 
0

2
3 2

G . 

(Note: δ km  is the Kronecker delta symbol equal to 1 when the subscripts are equal and zero otherwise). 

 The continuous part of the expansion is obtained from the integrations above and below the branch 

cut: since the values of F( , )x l  along C  and  (see Figure 2) are conjugate, we have 2 C3
 

(A1.13)                               j
p

d l l lc x t t x d( , ) exp[ ( ) ]Im[ ( , )]= − +
∞

∫
1

0
F  .                                       

It is easy to see that h l( , )x  is real along the real λ-axis, hence, we need only consider the expressions 

Im[ ( , ) / ( )]x l ly K  and Im[ ( , ) / ( )]x l lx K  when calculating  from eq. (2.3). The following 

manipulations are valid when 

Im[ ]F

l  is a positive real number and x is real: 
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(A1.14)       Im ( , )
( )

Im ( , , )[ ] ( ) / ( )
( )

[ ]x l
l

b lx
K

x x M a ca
c

i= − − + − −− −
−

−1 2 1
2

1 2G
G

c x   

                                       = −  + − − −− −
−

− −i a
c

i c a
c

ix x M a c c x x M a c x
2

1 2 1
2

1 2( ) / ( )
( )

( )
( )

[ ]( , , ) ( , ,b l lG
G

G
G

− )

                      = − − + − −− − − −
−

−
−

−
−

−i c a a
c c

c
a

i c
c a

ix x x M c a c x x M a c x
2

1 2 1
1

1
1

1 1 2exp( ) ( , , ) ( , , )( ) / ( ) ( )
( ) ( )

( )
( )

( )
( )

[ ]b l lG G
G G

G
G

G
G

, 

where we used Kummer's transformation in arriving at the last expression. But the expression in brackets in 

the last equation is simply x U c a c xi l ( , ,− ) . Hence, along the branch cut: 
 

(A1.15)                                         Im .                         ( , )
( )

( , )[ ] | |[( ) / ]
( )

x l
l

h l
l

b l
l

x
K

xi
i

= − − +1
4

3 2
2

2G

G

 

Consequently, the continuous spectrum component to f( , )x t  is given by 

(A1.16)                                        j d l l hc (x, t) =  
0

l l
∞
∫ − +exp[ ( ) ] ( ) ( , )t g x d ,                                                                      

(A1.17)  where                    g y yi
i

( ) exp( ) ( , ) ( )| |[( )/ ]
( )

l
p l

h l jb l
l

b= − + ∞ −∫
1

4
3 2

2

2

0
0

G

G
y y dy .                                                

Collecting eq. (A1.10) and eq. (A1.16) provides the solution j ( , )x t

l m= 2

 as a linear transformation on any 

. Changing integration variables in eq. (A1.16) to  and using | (  

then yields Proposition (2.1) as stated. � 

j r0 2 0∈L , ( , )∞ m)| / ( sinh )G im p m p2 =
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Appendix II: Proof of Proposition 2.2 

For the call option,  or , where recall , and f S S K0 ( ) ( )= − + j g0 1 1( ) ( / / )y y= − +k sg = 2 2D / k K= g / . 

Hence  and so  Proposition (2.1) fails for this payoff function because its assumptions do not 

hold. However, our alternative route is direct computation of F

j r0 2 0∉L , ( ,∞)

( , )x l   from eq. (2.3) for this particular 

payoff and inspection of its behavior in the l -plane. As we show below, F( ,x )l  has  additional poles on 

the real l -axis beyond those caused by the vanishing of the Wronskian. This is the phenomenom of  

enlargement of the point spectrum when an operator is extended. For example, see the discussion in 

Richtmyer (1978, Chapt. 8.4). 

 Write eq. (2.3) as − = +F( , ) ( , ) ( , ) ( , ) ( , )x x I x x I xl h l l x l l1 2  and let . w l g( ) ( ) / ( )= − −D G G 1 2a c

From known integrals5 and a parts integration, we find: 
 

(A2.1)   I x y y y dy
x

1 0
0

( , ) ( ) ( , ) ( )l r x l f= ∫   = − − − −− − − − −∫w l( ) ( ) ( , , )
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y y k M a c ya a
k x

2 1 1

0

1 2 dy

                  =
−

+
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−
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−
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


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( , , ) ( ) ( , , ) (
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a
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k
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1

1
1 2 2

1
1 2

)

−

                                                  

          I x y y y dy
x2 0( , ) ( ) ( , ) ( )l r h l f=
∞

∫ = −− − − − −∫       w l p( ) exp( ) ( ) ( , , )

max[ , ]

ic y y k U c a c y dyc a c a

x

k x
3 2 1

                   =  q w l p( ) ( ) exp( ) ( )
( )

( ,{k x ic xc a xc a k
a c a

U c a c x>
− − − − − −

− −
− −  2 1 1

1
1 , )  

                                                   + . 
− − − − − − − − −

+ − − − −
( ( , , ) ( , , )

( )( )( )
}k c a U c a c k xc a U c a c x

a a c a c a

2 2 2 2
1 1 2

 

 

As one sees, F( , )x l  now has two additional simple poles on the negative real l -axis, at 

, and . To maintain the correct inversion integral of eq. (2.4) 

we must now shift the inversion contour C  of Figure 2 to the left of these new singularities.  Completing the 

contour as before, the residues at these poles will contribute new terms to 

l l b= −i =  ( + ) /1 42 l l b= − −ii =  ( ) /1 2

1

4

f ( , )x t . That is, 

       f
p

d l l l f f f f
c

c

( , ) exp[ ( ) ] ( , ))x t
i

t x d
i

i

i ii iii= − + = + +

− ∞

+ ∞

∫
1

2
F iv+

ii

                              

where we have denoted the contributions from the two new poles as f fi + , the contribution from the 

previously identified poles as , and the contribution from the integration along the branch cut as . The 

remainder of the proof is the computation of these terms. 

fiii fiv
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Residues at li :  At , ali c= − = −1 and b .  Note  contributes nothing because I2

                k U k x U− + − − − − − x+ − − −( ) ( , , ) ( ) ( , , )b b b b b b1 1 1 1 = k k x x− + + − − +( ) ( ) +b b b b1 1 1 1= 0. 

I1 has residue  , so F− +g b/ ( )G 1 ( , )x l  has total residue of  − − − +g b b bU x x( , , ) / ( ) exp( )1 1G x . This yields 

(A2.2)                                   f g
b

b

b b
b bi x t

x
x M( , )
( )

( , , )[ ]= − +
+

+ −
1 1

2
2

G
x .                                          

In the original variables eq. (A2.2) reads f S W Si  ( , ) ( )t = , where W S is Merton's (1973) term( ) 7. 

 

Residues at lii :  There are two cases here:  

  (i) if b > 1  , then i , and so l b= − −1
2

1( ) a c= = −0 2 and b ;  

 (ii) if b < 1 , then i l b= −1
2

1( ) , and so a c= − =b b1 and .  
 

First, suppose case (i):  still contributes nothing, and  has the residue I2 I1 g b b( / / ) / ( )1 1 1− −k G . 

F( , )x l  has a total  residue g b b b b( / / ) ( , , ) / ( ) exp( )1 1 2 2 1− − − −k U x xG . Second, suppose case (ii): both 

 and  contribute nothing. We can summarize both cases together with: I1 I2
 

(A2.3)                              f q g
b b

b b bb

b
ii x t

k
x M x( , ) ( )

( )
( , , ) exp(( ) [= − − − −> t)] −

−
1

1 1 1 1
1

G
 .                                                

In terms of ( , )S t , as t →∞ , this yields a term f S g S rii ( , ) ( ) exp( )t t≈ − . Since all the remaining terms also 

decay exponentially (see the discussion following Prop. 2.2), this confirms that, indeed, 

.    lim ( (t→∞ W, )t =f S )S
 

Residues at the poles of and the branch cut contribution  w l( ) : 

Straightforward but tedious calculations show that  
 

(A2.4)    j q gb
b

iii x t x( , ) ( )= >3
m

m
m

m
mx t x k

m d
M m c k M m c x

=

− −−

∑ − − +
+

− − −
0

23 2

2
2
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exp[ ( ) ] ( )
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( , , ) ( , ,
b

d l   
G m )                             

 (A2.5) j g d
b b

iv x t x t x k( , ) exp( )
( ) (

= − −
− − +1

2
1
2

1 1)
  

× − − + + − − +

∞
− + +

∫ 1
4

0

1
2

1

2

2 3
2 2

1
2 2

1 2 1 2
p l

b l

l
l b bl l l l|G

G

[ ( ) ]

( )
| exp( )( ) ( , , ) ( , , )

i

i
it kx U i i x U i i k d+ l l .    

Substituting the original variables ( , )S t , changing integration variable to , and some rearrangement 

then yields the proposition as stated. � 

l m= 2
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                          Appendix III: Proof of Proposition 2.5 
 

We want to establish that for Model I 
 

(A3.1)                  1 0= +
∞
∫A S G S Z dZ( , ) ( , , )t t , 

where A S( , )t is given by Proposition 2.3 and G S Z( , , )t is given by Proposition 2.4. Our method is to (i) take 

the Laplace transform of eq. (A3.1), and then (ii) show that the resulting equation is equivalent to certain 

known recurrence relations among the confluent hypergeometric functions  and U a .  M a c x( , , ) c x( , , )

 First A S A x t( , ) ~( , )t = and G S Z G x y t( , , ) ~( , , )t = , where x S= g / , y Z= g / , and t = s t2 2/ .  

Take the Laplace transform L f t f s[ ( )] ( )= of both sides with respect to t, where Re s > 0 . Use 

L s[ ] /1 1= = / [ ( )1 1 2− + −l b / ]4  in the notation of Proposition 2.3. Also L A x t[ Kabs x~( , )] = ( , )l . Recall 

that exp( ) ( , , ) exp( ) ~( , , )− t G x y tb − =r G S Zt t  is a solution to eq. (2.1) with delta function boundary conditions. 

The solutions to eq. (2.1) use l  instead of l , but the two transform variables are related by l l b= + , 

which is just the interest rate discount factor in terms of the Laplace transform variable. Hence, if we define 

G  via L G x y t G x y[ ~( , , )] ( , , )= l , then G x y x( , , ) ( , )l = F l , where F( , )x l is given by eq. (2.3) and within 

which one substitutes . In summary, eq. (A3.1) is equivalent to f d g g0 ( ) ( / / )x x= − y

 

(A3.2)           1
1
4

01 2l b
l r l h l x l r l x l h l

+ −

∞
= − + + ∫∫

( )
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )K x y x y dy y x y dabs x

x
y  

 
                      = − + +K x I x I xabs ( , ) ( , ) ( , )l l1 2 l .   

 

Eqs. (A1.2) and (A1.3) from Appendix I provide x l( , )x and h l( , )x (substitute l l→ ) . Using the 

integration formulas of footnote 5, we find that 

 

(A3.3)                 I x x y
a

M a c ya
c

a
x

1
1
2

2 0( , ) ( , ) ( , , )|( )
( )
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−
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( )
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2

2a
c

ax
a

M a c x xh l ) . 

 
In eq. (A3.3), the boundary term at  vanishes because y = 0 Re Res a> ⇒ <0 0 . Hence 
   

                                       I x x
a

M a c x U c a c xa
c1

1
2

2( , ) exp( ) ( , , ) ( , , )( )
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                = − + − − −−
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G
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2

1 2 2a
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M a c c x U c a c x, ) , 

 
where we used Kummer’s transformation on the last line3. 
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using the asymptotic relation in footnote 4. Hence 
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again using Kummer’s transformation. Hence eq.(A3.2) is equivalent to 
        
(A3.5)                                          Y G( ) ( )x c= −2  
 

using                  Y GD( ) ( )[( ) ( , ) ( , ) ( , ) ( , )]x a a c M x U x M x U= − + − +1 1 1 1 2 2 x , 
          
                         M x M a c c x( , ) ( , , )1 2 2= − + − − ,     M x M a c c x( , ) ( , , )2 1 2= − + − − , 
              U x ,                   U c a c x( , ) ( , , )1 = − U x U c a c x( , ) ( , , )2 1= − − . 
 
It is easy to check that Y G( ) ( )0 2= − c , so we need to verify that Y ' ( )x = 0 , i.e., that 
 
(A3.6)       ( )[ ( , ) ' ( , ) ' ( , ) ( , )] [ ( , ) ' ( , ) ' ( , ) ( , )]a c M x U x M x U x M x U x M x U x+ − − + − =1 1 1 1 1 2 2 2 2 0 . 
 
Various recurrence relations may be found in Abramowitz and Stegun (1972, Chapt.13, Sec 13.4). 
 
The relation               ( ) ( , , ) ( ) ( , , ) ' ( , , )b a M a b z b a z M a b z zM a b z− − = − − +1  

implies                                        M x x a
a

M x x
a

M x( , ) ( ) ( , ) ' ( , )2 1= − 1−
+ . 

 
The relation                     U a b z a b z U a b z zU a b z( , , ) ( ) ( , , ) ' ( , , )− = − + −1  
implies                                        U x x a U x xU x( , ) ( ) ( , ) ' ( , )2 1= 1− − . 
 

The relations                                M a b z a
b

M a b z' ( , , ) ( , , )= + +1 1  

and                                      ( ) ( , , ) ( , , ) ' ( , , )b a M a b z bM a b z bM a b z− + = −1  

imply                M x a c
a

M x M x' ( , ) [ ( , ) ' ( , )]2 1 1 1= −
− +

− . 

 
The relations                                U a b z aU a b z' ( , , ) ( , , )= − + +1 1  
and                              U a b z U a b z U a b z( , , ) ( , , ) ' ( , , )+ = −1  
imply                                            U x a c U x U x' ( , ) ( )[ ( , ) ' ( , )]2 1 1 1= − + − . 
    

Making these substitutions shows that eq. (A3.6) is an identity, which establishes eq. (A3.1). � 
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                                                                      Footnotes. 

1. All the solutions to Kummer’s confluent hypergeometric equation xw c x w awxx x+ − − =( ) 0 , unless  c is an 

integer, are of the form 

           . w x A M a c x B x cM a c c x A w x B w x( ) ( , , ) ( , , ) ( ) ( )= + − − + − = +1 1 2 1 2

Our numbering of solutions follows both Slater (1960) and Erdelyi (1953).  is the solution defined by the 

series  , where the symbols 

M a c x( , , )

( ) / ( ) !a nxn c nnn =
∞∑ 0 ( )a 0 1= , ( )a a1 = , ( ) (a a2 )a 1= + , are employed. Choosing 

 and  yields a solution  U aA c a c= − − +G G( ) / ( )1 1 B c= −G G( ) / (1 a) c( , x w x) ( ), = 5  , finite as x →∞

x Uxp( ) (

. U is a many-

valued  function of x, and analytic for all  values of  a and c. Another solution is w x7 c a c xe , , ) ( ) = − − . In 

general, the first two  parameters a and c for these special functions will be complex numbers. Consider any complex 

number z x iy i= + = r qexp( ) , where i . We denote the real and imaginary parts, modulus and argument by = −1

x z= Re , , y z= Im r =| z|   and q = arg z , respectively. 
 

2. Generalized Laguerre Polynomials are defined by              

                                             Lm x m x x d
dx

x xm m( )( ) ( / !) exp( )( ) [ exp( )]a a a = −− +1 . 

3. Kummer's transformation is the identity .           M a c x e x M c a c x( , , ) ( , , )= − −
 

4. The following asymptotic relations are known: 

                As x →∞ , M a c x c a xa c x O x( , , ) [ ( ) / ( )] exp( ) [( ( | | )]= − + −G G    1 1 .  

                As  x →− ∞ , M a c x c c a x a O x( , , ) [ ( ) / ( )]( ) [( ( | | )]= − − − + −G G 1 1  .  

                As | | ,  U ax → ∞ c x x a O x x( , , ) [( ( | | )], ( / arg / )= − + − < <−1 3 21        p p3 2 . 

5. The following indefinite integrals are known (Slater, 1960, Sec 3.2): 

                xa M a c x dx xa

a
M a c x C a− =

−

−
− + ≠∫ 2 1

1
1 1( , , ) ( , , ) ( ) . 

                             xa U a c x dx xa

a a c
U a c x C− =

−

− −
− +∫ 2 1

1
1( , , )

( )( )
( , , )   (a≠1  and a  c≠ )

6. The following definite integral is known (Slater, 1960, Sec 3.2.3):  

                   x x U a c x dx b b
a b c

b− − =
c+ −

+ + −
∞
∫ 1

0

1
1

exp( ) ( , , ) ( ) ( )
( )

 G G
G

.   (Re( ) , Re( ) Re( ) )b c b> < +0 1   

7.  Merton's asymptotic solution to eq. (2.1) for the call option is (Merton, 1973, eq. 8.46):  

                  W S , where . S D
r

D S M D

S
( ) ( )

( )
, ,( )= − +

+
+

−+
−2

2 2
2 21

2s b b
b b

s
b

b

G
b s= 2 2r /

8. The formula may be derived by making the substitution, where the signs of ± ∞i  and c are opposite ,   
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1

0n +
= − +
± ∞

∫ic
s v ic ds

i
exp[ ( )] . 

9. In writing down the expression for  ,  we used A S∞ ( ) x M x xb

b
b b

b
bG

G
G( )

( , , ) ( , )
( )+

+ − = −
1

1 1 .
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      Table I 

 

                                       Comparisons between the Call Option Values  

                                 for the Constant Yield and Constant Dividend Models. 

 

 

Time to 

 

Stock Price:  S = $90 

 

S  = 100 

 

S = 110 

Maturity 

(years) 

Constant 

Yield 

Constant 

Dividend 

Constant 

Yield 

Constant 

Dividend 

Constant 

Yield 

Constant 

Dividend 

.01 0.00 0.00 0.80 0.80 10.00 10.00 

.1 0.12 0.12 2.51 2.52 10.19 10.19 

.2 0.48 0.49 3.53 3.55 10.67 10.68 

.3 0.89 0.91 4.30 4.34 11.17 11.20 

.4 1.29 1.33 4.94 4.99 11.65 11.69 

.5 1.67 1.72 5.50 5.57 12.10 12.16 

1.0 3.26 3.42 7.58 7.77 13.94 14.12 

2.0 5.44 5.92 10.18 10.71 16.43 16.95 

3.0 6.89 7.75 11.84 12.78 18.08 19.03 

4.0 7.90 9.19 12.98 14.39 19.22 20.67 

5.0 8.62 10.37 13.78 15.70 20.02 22.01 

10.0 9.86 14.03 15.05 19.75 21.16 26.24 

20.0 8.20 16.79 12.70 22.85 18.05 29.56 

100.0 0.20 18.13 0.46 24.41 0.89 31.29 

Infinite 0.00 18.14 0.00 24.41 0.00 31.29 

 

Notes: For this table, the interest rate r = 5% per year, the volatility σ = 20% per year , the dividend  

D = $5 per year, and the exercise price K = $100. The constant yield parameter y is always $5/S. 
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     Table II 

 

                                           Differences between the Call Option Values  

                                    for the Constant Yield and Constant Dividend Models . 

 

 

Annual 

 

   Strike Price:  K = $50 

 

K  = 100 

 

K = 150 

Dividend 

D 

Volatility: 

σ = .2 

 

σ = .4 

 

σ = .2 

 

σ = .4 

 

σ = .2 

 

σ = .4 

$1.00 .020 .032 .050 .088 .009 .058 

 5.00 .001 .082 .193 .385 .028 .250 

10.00 -.235 -.015 .275 .648 .031 .405 

 

Notes: For this table, the interest rate r = 5% per year, the time to maturity τ = 1 year, and the stock price S = 

$100. The constant yield parameter is always y = D/$100, where D is the annual dollar dividend.

 37



 
     Table III 

 

                                 Put Option Values for the Constant Dividend Model. 

 

 

Time to 

 

Stock Price:  S = $90 

 

S  = 100 

 

S  = 110 

Maturity 

(years) 

Part 1 

 

 

Part 2 

 

Total 

Put 

Value 

Part 1 

 

Part 2 

 

Total 

Put 

Value 

Part 1 

 

Part 2 

 

Total 

Put 

Value 

1.0 0.00 13.42 13.42 0.00 7.77 7.77 0.00 4.12 4.12 

2.0 0.00 15.92 15.92 0.00 10.71 10.71 0.00 6.95 6.95 

3.0 0.00 17.75 17.75 0.00 12.78 12.78 0.00 9.03 9.03 

4.0 0.00 19.19 19.19 0.00 14.39 14.39 0.00 10.67 10.67 

5.0 0.00 20.37 20.37 0.00 15.70 15.70 0.00 12.01 12.01 

10.0 1.76 22.17 23.93 0.94 18.76 19.70 0.51 15.70 16.21 

20.0 14.22 8.04 22.26 11.36 8.20 19.56 9.06 8.10 17.16 

100.0 0.57 0.003 0.57 0.54 0.004 0.54 0.51 0.005 0.52 

Infinite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Notes: The total put value is broken into 2 pieces: Part 1 is the bankruptcy claim due to the stock price being 

absorbed at zero. Part 2 is the put  value conditional on no absorption. For this table, the interest rate r = 5% 

per year, the volatility σ = 20% per year , the dividend D = $5 per year, and the exercise price K = $100. 
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     Table IV 

 

    Bond Prices and Yields for Model II:  

           Equilibrium and Non-Equilibrium Cases.   

 

 

 

Years to 

Maturity 

 

 

Equilibrium Example: 

Short Term Rate r = 3% per year, 

Volatility σ =.25 per year . 

 

 

Non-Equilibrium Example: 

r = 3% per year, 

 σ =.75 per year . 

 Price Yield (%) Price Yield (%) 

1 0.9692 3.133 0.9694 3.106 

2 0.9369 3.262 0.9391 3.144 

4 0.8694 3.498 0.8850 3.056 

5 0.8351 3.605 0.8621 2.967 

10 0.6688 4.023 0.7818 2.462 

20 0.4090 4.470 0.7058 1.742 

30 0.2456 4.680 0.6714 1.328 

100 6.658 10-3 5.012 0.6213 0.476 

Infinite 0.0 5.156 0.6156 0.0 

 

Notes: For this table, the parameter A  =  .15 per year and B  =  2.0 per year.  

(Figures are attached as hard copy only) 
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